Speech Processing: MFCC Based Feature Extraction Techniques- An Investigation
نویسندگان
چکیده
منابع مشابه
MFCC and Prosodic Feature Extraction Techniques:
In this paper our main aim to provide the difference between cepstral and non-cepstral feature extraction techniques. Here we try to cover-up most of the comparative features of Mel Frequency Cepstral Coefficient and prosodic features. In speaker recognition, there are two type of techniques are available for feature extraction: Short-term features i.e. Mel Frequency Cepstral Coefficient (MFCC)...
متن کاملFeature Extraction Using Mfcc
Mel Frequency Ceptral Coefficient is a very common and efficient technique for signal processing. This paper presents a new purpose of working with MFCC by using it for Hand gesture recognition. The objective of using MFCC for hand gesture recognition is to explore the utility of the MFCC for image processing. Till now it has been used in speech recognition, for speaker identification. The pres...
متن کاملA Review on Feature Extraction Techniques for Speech Processing
Speech and language are considered uniquely human abilities Speech is a complex signal that is characterized by varying distributions of energy in time as well as in frequency, depending on the specific sound that is being produced. The aim of digital speech processing is to take advantage of digital computing techniques to process the speech signal for increased understanding, improved communi...
متن کاملIntoxicated Speech Detection using MFCC Feature Extraction and Vector Quantization
This study has been done on a technique which is suitable for tapping the telephonic conversation from a remote location to identify intoxication and consequent impaired brain activity that may cause criminal events e.g. DUI (driving under influence). This technique is time efficient, easy to use, non–invasive for the peoples and affordable for law enforcement personnel, bartenders/servers, cou...
متن کاملSpeech/Music Classification using wavelet based Feature Extraction Techniques
Audio classification serves as the fundamental step towards the rapid growth in audio data volume. Due to the increasing size of the multimedia sources speech and music classification is one of the most important issues for multimedia information retrieval. In this work a speech/music discrimination system is developed which utilizes the Discrete Wavelet Transform (DWT) as the acoustic feature....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1717/1/012009